Abstract

Land cover (LC) maps are crucial to environmental modeling and define sustainable management and planning policies. The development of a land cover mapping continuous service according to the new EAGLE legend criteria has become of great interest to the public sector. In this work, a tentative approach to map land cover overcoming remote sensing (RS) limitations in the mountains according to the newest EAGLE guidelines was proposed. In order to reach this goal, the methodology has been developed in Aosta Valley, NW of Italy, due to its higher degree of geomorphological complexity. Copernicus Sentinel-1 and 2 data were adopted, exploiting the maximum potentialities and limits of both, and processed in Google Earth Engine and SNAP. Due to SAR geometrical distortions, these data were used only to refine the mapping of urban and water surfaces, while for other classes, composite and timeseries filtered and regularized stack from Sentinel-2 were used. GNSS ground truth data were adopted, with training and validation sets. Results showed that K-Nearest-Neighbor and Minimum Distance classification permit maximizing the accuracy and reducing errors. Therefore, a mixed hierarchical approach seems to be the best solution to create LC in mountain areas and strengthen local environmental modeling concerning land cover mapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call