Abstract

The development of heart failure in the cardiomyopathic hamster is associated with a decrease in norepinephrine stores and parallel increases in cardiac sympathetic tone and tyrosine hydroxylase activity. Despite the increase in tyrosine hydroxylase, cardiac norepinephrine synthesis does not increase in heart failure. In this study, we have shown that an accumulation of cardiac dopamine accompanies the decline of cardiac norepinephrine. The abnormal content of norepinephrine and of dopamine in the decompensating hamster heart is restored to normal by peripheral ganglionic blockade. The acute increase in cardiac sympathetic tone induced by immobilization stress in control hamsters mimics the alterations in cardiac catecholamine distribution found in heart failure. Other investigators have demonstrated similar alterations in the catecholamine content of the rat submaxillary gland and adrenal medulla following an increase in sympathetic input to these organs. We conclude that the increase in cardiac sympathetic tone in the late stages of hamster cardiomyopathy appears to lead to a shift in the rate-limiting step for norepinephrine synthesis from the hydroxylation of tyrosine to the hydroxylation of dopamine. There is evidence that this shift which results in an accumulation of dopamine in the noradrenergic nerve terminals of the heart is a general manifestaion of augmented sympathetic nerve traffic rather than a peculiarity of hamster cardiomyopathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.