Abstract

The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock-in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge. Here the generation of knock-in mice with successful targeted insertion of large donor DNA elements ranged from 3.0 to 7.1 kb at the ROSA26 locus using the CRISPR/Cas system was achieved. Multiple independent knock-in founder mice were obtained by injection of hCas9 mRNA/sgRNA/donor vector mixtures into the cytoplasm of C57BL/6N zygotes when the injected zygotes were treated with an inhibitor of actin polymerization, cytochalasin. Successful germ line transmission of three of these knock-in alleles was also confirmed. The results suggested that treatment of zygotes with actin polymerization inhibitors following microinjection could be a viable method to facilitate targeted insertion of large DNA elements by the CRISPR/Cas system, enabling targeted knock-in readily attainable in zygotes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.