Abstract
Using positron emission particle tracking (PEPT) data we recover key granular rheology ingredients (velocity, shear rate, volume concentration, bed depth) for developing, testing and calibrating granular flow models. In this regard, 5 mm glass beads were rotated within a 476 mm diameter mill fitted with angled lifter bars along the inner azimuthal walls and operated in batch mode across a range of drum rotation speeds that span cascading and cataracting Froude regimes. After averaging the PEPT outputs into representative volume elements, subsequent continuum analysis of the flowing layer revealed a rich coexistence of flow regimes: a quasi-static layer dominated by frictional interactions, a dense, liquid-like layer that is stressed by frictional and collisional interactions, and an inertial layer that interacts mainly through collisions. Combining the inertial number with an empirically formulated dilatancy law and the measured granular rheological ingredients then facilitated the recovery of the total depth-dependent pressure of the free surface layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.