Abstract

In this study, we identified FOXP3 as a transcription factor for lncRNA SNHG1, which exerts a significant protective role against cardiomyocyte hypertrophy. Through DNA-pull down experiments and ChIP analysis, we confirmed that FOXP3 could bind to the promoter of SNHG1. Luciferase reporter and RT-qPCR experiments validated that FOXP3 overexpression promoted SNHG1 expression in cardiomyocytes. Furthermore, in a model of cardiomyocyte hypertrophy, FOXP3 expression was upregulated, particularly in cardiomyocytes. Functional assays demonstrated that FOXP3 overexpression inhibited cardiomyocyte hypertrophy, while FOXP3 knockdown held the opposite effect. Additionally, we revealed that lncRNA SNHG1 acted as a sponge for miR-182, miR-326, and miR-3918, thereby stabilizing FOXP3 mRNA in cardiomyocytes. The protective role of SNHG1 against cardiomyocyte hypertrophy was found to depend on the presence of FOXP3, forming a positive FOXP3/SNHG1 feedback axis. Moreover, we unveiled this positive FOXP3/SNHG1 feedback axis suppressed cardiomyocyte hypertrophy by negatively regulating Parkin-mediated mitophagy. These findings provide novel insights into the molecular mechanisms underlying cardiomyocyte hypertrophy and offer potential therapeutic targets for related interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.