Abstract

Objective. Electrochemically safe and efficient charge injection for neural stimulation necessitates monitoring of polarization and enhanced charge injection capacity of the stimulating electrodes. In this work, we present improved microstimulation capability by developing a custom-designed multichannel portable neurostimulator with a fully programmable anodic bias circuitry and voltage transient monitoring feature. Approach. We developed a 16-channel multichannel neurostimulator system, compared charge injection capacities as a function of anodic bias potentials, and demonstrated convenient control of the system by a custom-designed user interface allowing bidirectional wireless data transmission of stimulation parameters and recorded voltage transients. Charge injections were conducted in phosphate-buffered saline with silicon-based iridium oxide microelectrodes. Main results. Under charge-balanced 200 µs cathodic first pulsing, the charge injection capacities increased proportionally to the level of anodic bias applied, reaching a maximum of ten-fold increase in current intensity from 10 µA (100 µC cm−2) to 100 µA (1000 µC cm−2) with a 600 mV anodic bias. Our custom-designed and completely portable 16-channel neurostimulator enabled a significant increase in charge injection capacity in vitro. Significance. Limited charge injection capacity has been a bottleneck in neural stimulation applications, and our system may enable efficacious behavioral animal study involving chronic microstimulation while ensuring electrochemical safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.