Abstract
This paper proposes a novel and efficient method for channel equalization of MIMO- OFDM system. The method utilizes extreme learning machine (ELM), a class of supervised learning algorithms, to achieve fast training and low bit error rates. The numerical simulation results show that the proposed methods significantly outperform traditional feed-forward neural networks based MIMO-OFDM system equalizers in terms of bit error rate performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.