Abstract
Vacuum-outlet GC with atmospheric-pressure air as the carrier gas is implemented at outlet pressures up to 0.8 atm using a low-dead-volume polymer-coated surface acoustic wave (SAW) detector. Increases in the system outlet pressure from 0.1 to 0.8 atm lead to proportional increases in detector sensitivity and significant increases in column efficiency. The latter effect arises from the fact that optimal carrier gas velocities are lower in air than in more conventional carrier gases such as helium or hydrogen due to the smaller binary diffusion coefficients of vapors in air. A 12-m-long, 0.25-mm-i.d. tandem column ensemble consisting of 4.5-m dimethyl polysiloxane and 7.5-m trifluoropropylmethyl polysiloxane operated at an outlet pressure of 0.5 atm provides up to 4 x 10(4) theoretical plates and a peak capacity of 65 (resolution, 1.5) for a 3-min isothermal analysis. At 30 degrees C, mixtures of vapors ranging in vapor pressure from 8.6 to 76 Torr are separated in this time frame. The SAW detector cell has an internal volume of < 2 microL, which allows the use of higher column outlet pressures with minimal dead time. The sensor response is linear with solute mass over at least 2-3 decades and provides detection limits of 20-50 ng for the vapors tested. The combination of atmospheric-pressure air as carrier gas, modest operating pressures, and SAW sensor detection is well-suited for field instrumentation since it eliminates the need for support gases, permits smaller, low-power pumps to be used, and provides sensitivity to a wide range of vapor analytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.