Abstract

This study presents an electrocardiogram (ECG) monitoring and processing system which can observe subjects in real time and display the resultant ECG signals on a computer for observation. The primary application is for the remote observation of cardiac patients. This paper aims to determine its reliability by analysing its portability and wireless connectivity. The system is comprised of three principal units, namely the data acquisition circuit, where cardiac electrical signals are detected using three surface electrodes placed at three different positions on the chest wall to follow the Einthoven Triangle. The signals measured are amplified and filtered by components in a circuit and are then carried to a data processing unit where a ATmega328P microcontroller with a ZigBee interface module are used to transfer the biosignal wirelessly to the Graphical User Interface (GUI) unit which has the capacity to observe ECG biosignals on a computer. The results demonstrated that the design successfully produced a distortion-free signal, namely the hardware and software elements operated and intercommunicated correctly. In both LabVIEW and MATLAB configurations, the GUI characteristics were examined and found to yield unproblematic, user-friendly displays in real-time. Thus, this research provides a novel ECG system design to effectively analyse cardiac patients, however, it would be useful to develop a tool that can differentiate the various forms of cardiac arrhythmia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call