Abstract

A multianalyte chemiluminescence (CL) imaging immunoassay strategy for sensitive detection of different isoforms of prostate specific antigen (PSA) was developed. The microtiter plates were fabricated by simultaneously immobilizing of free-PSA (f-PSA) and total-PSA (t-PSA) capture antibody on nitrocellulose (NC) membrane. Each of the array were spotted in replicates of six spots within a spacing of 2mm. 16 or 48 detection wells were integrated on a single NC membrane and each well could be used as a microreactor and microanalysis chamber. Under a sandwiched immunoassay, the CL signals on each sensing site were collected by a charge-coupled device (CCD), presenting an array-based chemiluminescence imaging. Soybean peroxidase (SBP) was used to label f-PSA or t-PSA monoclonal antibody. With the amplification effects of two enhancers, 3-(10′-phenothiazinyl) propane-1-sulfonate (SPTZ) and 4-morpholinopyridine (MORP), the CL intensity could significantly enhanced, which improved the sensing sensitivity and detection limit. Under the optimal conditions, the linear response to the analyte concentration ranged from 0.01–36.7ng/mL and 0.02–125ng/mL for f-PSA and t-PSA, respectively. The results for the detection of forty serum samples from prostate cancer patients and cancer-free patients showed good agreement with the clinical data, suggesting that the proposed assay had acceptable accuracy. The proposed CL imaging immunoassay possess high throughput and acceptable reproducibility, stability and accuracy, which made it great potential to available to distinguish different isoforms of PSA in serum samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call