Abstract

A method is described for extracting and detecting the fluorescent reaction product (2',7'-dichlorofluorescein, DCF) that is formed by reaction of reactive oxygen species (ROS) with dichlorodihydrofluorescein diacetate (DCFH-DA). DCF is extracted by using porous polyaniline nanotubes (PPN) which have a large specific surface and pore volume which favor the adsorption capacity. Additional attractive features include an appropriate pore size distribution, hydrophobic surface, and electron-attracting groups which contribute to DCF adsorption. A variety of methods was applied to characterize the morphology of PPN. Under optimal conditions and by performing DCF in 0.08-1.0μM concentrations, the correlation coefficient of the calibration plot is 0.999. The limits of detection for standard DCF solutions is 20nM. Compared with commercial sorbents for solid-phase extraction (SPE) such as commercially available carbon or Welchrom® C18, the use of the new sorbent results in better retraction recovery (92%) and longer reuse times (30 times). Doxorubicin and X-ray radiation were used to externally stimulate the ROS production in HepG2 and Hela cells. ROS was stabled by DCFH-DA and quantified by DCF. Following SPE, DCF was detected by HPLC and the concentration ROS was calculated. Graphical abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.