Abstract

Inspired by the mechanism of bone formation, a porous collagen-carboxymethyl cellulose/hydroxyapatite (Col-CMC/HA) composite was designed and fabricated using a biomimetic template of Col and CMC protein-polysaccharide bi-molecules. The morphology, composition and physical properties of Col-CMC/HA composites were characterized systematically. It was found that the nano-HA homogenously distributed on the surface of Col-CMC bi-templates while the composite presented 3D porous structure with pore size from 100 μm to 300 μm. The porosities of composites were located at the range of 71%–85%. Besides, the compressive strength of composites was highly depended on the ratio of Col to CMC in the organic template. The optimized composite in respect to physical properties showed a compressive strength as high as 7.06 MPa, quite close to that of natural bone. The high relative growth rate of wild-type mouse embryonic fibroblasts cells was found for the composite, indicating a good biocompatibility. The organic-inorganic composite also behaved good in collagenase resistance and could be biodegraded in 8 weeks, with about 50% of initial weight left at the ratio of Col to CMC of 1:9. The results demonstrated that the Col-CMC/HA composite by bi-molecular template method was a rational and safe method to prepare biomaterials with tunable properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call