Abstract

Postoperative ileus (POI) is triggered by an innate immune response in the muscularis externa (ME) and is accompanied by bacterial translocation. Bacteria can trigger an innate immune response via toll-like receptor (TLR) activation, but the latter’s contribution to POI has been disproved for several TLRs, including TLR2 and TLR4. Herein we investigated the role of double-stranded RNA detection via TLR3 and TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathway in POI. POI was induced by small bowel intestinal manipulation in wt, TRIF-/-, TLR3-/-, type I interferon receptor-/- and interferon-β reporter mice, all on C57BL/6 background, and POI severity was quantified by gene expression analysis, gastrointestinal transit and leukocyte extravasation into the ME. TRIF/TLR3 deficiency reduced postoperative ME inflammation and prevented POI. With bone marrow transplantation, RNA-sequencing, flow cytometry and immunohistochemistry we revealed a distinct TLR3-expressing radio-resistant MHCIIhiCX3CR1- IBA-1+ resident macrophage population within the deep myenteric plexus. TLR3 deficiency in these cells, but not in MHCIIhiCX3CR1+ macrophages, reduced cytokine expression in POI. While this might not be an exclusive macrophage-privileged pathway, the TLR3/TRIF axis contributes to proinflammatory cytokine production in MHCIIhiCX3CR1- IBA-1+ macrophages during POI. Deficiency in TLR3/TRIF protects mice from POI. These data suggest that TLR3 antagonism may prevent POI in humans.

Highlights

  • Postoperative ileus (POI) is a gastrointestinal dysmotility and a common consequence of abdominal surgery

  • In a first set of experiments, we investigated the role of TIR-domain-containing adapter-inducing interferon-b (TRIF) in a standardized POI model

  • We demonstrate that the TRIF-TLR3 pathway plays a prominent role in POI by triggering the postoperative cytokine response within the muscularis externa (ME)

Read more

Summary

Introduction

Postoperative ileus (POI) is a gastrointestinal dysmotility and a common consequence of abdominal surgery. The pathophysiology of POI is multifactorial and involves activation of resident immunocytes and cells of the enteric nervous system within the muscularis externa (ME) during surgery. Upon activation, these cells release proinflammatory cytokines and chemokines which further trigger and maintain ME inflammation and recruitment of blood-derived leukocytes [2]. Macrophages highly express the CX3C chemokine receptor 1 (CX3CR1) [8] and show a prominent distribution within the intestinal musculature [9] They are self-maintaining and colonize distinct niches in the gut, and they are essential for intestinal homeostasis during which they can shape intestinal motility [8, 10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call