Abstract
BackgroundConserving genetic diversity and local adaptations are management priorities for wild populations of exploited species, which increasingly are subject to climate change, habitat loss, and pollution. These constitute growing concerns for the walleye Sander vitreus, an ecologically and economically valuable North American temperate fish with large Laurentian Great Lakes' fisheries. This study compares genetic diversity and divergence patterns across its widespread native range using mitochondrial (mt) DNA control region sequences and nine nuclear DNA microsatellite (μsat) loci, examining historic and contemporary influences. We analyze the genetic and morphological characters of a putative endemic variant– “blue pike” S. v. “glaucus” –described from Lakes Erie and Ontario, which became extinct. Walleye with turquoise-colored mucus also are evaluated, since some have questioned whether these are related to the “blue pike”.ResultsWalleye populations are distinguished by considerable genetic divergence (mean FST mtDNA = 0.32 ± 0.01, μsat = 0.13 ± 0.00) and substantial diversity across their range (mean heterozygosity mtDNA = 0.53 ± 0.02, μsat = 0.68 ± 0.03). Southern populations markedly differ, possessing unique haplotypes and alleles, especially the Ohio/New River population that houses the oldest haplotype and has the most pronounced divergence. Northern formerly glaciated populations have greatest diversity in Lake Erie (mean heterozygosity mtDNA = 0.79 ± 0.00, μsat = 0.72 ± 0.01). Genetic diversity was much less in the historic Lake Erie samples from 1923–1949 (mean heterozygosity mtDNA = 0.05 ± 0.01, μsat = 0.47 ± 0.06) than today. The historic “blue pike” had no unique haplotypes/alleles and there is no evidence that it comprised a separate taxon from walleye. Turquoise mucus walleye also show no genetic differentiation from other sympatric walleye and no correspondence to the “blue pike”.ConclusionsContemporary walleye populations possess high levels of genetic diversity and divergence, despite habitat degradation and exploitation. Genetic and previously published tagging data indicate that natal homing and spawning site philopatry led to population structure. Population patterns were shaped by climate change and drainage connections, with northern ones tracing to post-glacial recolonization. Southerly populations possess unique alleles and may provide an important genetic reservoir. Allelic frequencies of Lake Erie walleye from ~70–90 years ago significantly differed from those today, suggesting population recovery after extensive habitat loss, pollution, and exploitation. The historic “blue pike” is indistinguishable from walleye, indicating that taxonomic designation is not warranted.
Highlights
Conserving genetic diversity and local adaptations are management priorities for wild populations of exploited species, which increasingly are subject to climate change, habitat loss, and pollution
Haplotypes 1–23 match those previously described by our laboratory [41,52,53] and five additional ones are identified here –totaling 28 haplotypes
Haplotype 3 is the most numerous, and is distributed from the upper Great Lakes through the south. It is the sole haplotype shared between the contemporary and historic samples; it predominated in historic Lake Erie walleye and characterized all “blue pike” samples, in contrast to being represented in just 22% of today's Lake Erie walleye (Figure 2B, Additional file 2)
Summary
Conserving genetic diversity and local adaptations are management priorities for wild populations of exploited species, which increasingly are subject to climate change, habitat loss, and pollution. These constitute growing concerns for the walleye Sander vitreus, an ecologically and economically valuable North American temperate fish with large Laurentian Great Lakes' fisheries. Species today face many challenges that influence their genetic, phenotypic, and ecological diversity and divergence patterns across space and time. Evaluating comparative and hierarchical levels of genetic composition and differentiation of widespread taxa, as well as their unique or reservoir populations, is important for prioritizing conservation management strategies [5,6]. Low migration may lead to higher divergences, whereas mobility fosters gene flow and homogeneity [17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.