Abstract

The identifying code problem for a given graph involves finding a minimum subset of vertices such that each vertex of the graph is uniquely specified by its nonempty neighborhood within the identifying code. The combinatorial optimization problem has a wide variety of applications in location and detection schemes. Finding an identifying code of minimum possible size is a difficult task. In fact, it has been proven to be computationally intractable (NP-complete). Therefore, the use of heuristics to provide good approximations in a reasonable amount of time is justified. In this work, we present a new population-based local search algorithm for finding identifying codes of minimum cost. Computational experiments show that the proposed approach was found to be more effective than other state-of-the-art algorithms at generating high-quality solutions in different types of graphs with varying numbers of vertices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call