Abstract
A population-based incremental learning (PBIL) method is proposed to search for both robust and global optimal solutions of an inverse problem in which there are inevitable tolerances on the decision variables. To reduce the computational costs of the proposed algorithm, a methodology for evaluating the expectancy measures and a philosophy for worst-case solutions are proposed. Moreover, a novel mechanism for selecting the performance metrics is introduced to enable the algorithm to find both global and robust optimal solutions in a single run. Two numerical examples are reported to validate the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.