Abstract
Inspired by the behavior of the human visual system, spatial color algorithms perform image enhancement by correcting the pixel channel lightness based on the spatial distribution of the intensities in the surrounding area. The two visual contrast enhancement algorithms RSR and STRESS belong to this family of models: they rescale the input based on local reference values, which are determined by exploring the image by means of random point samples, called sprays. Due to the use of sampling, they may yield a noisy output. In this paper, we introduce a probabilistic formulation of the two models: our algorithms (RSR-P and STRESS-P) rely implicitly on the whole population of possible sprays. For processing larger images, we also provide two approximated algorithms that exploit a suitable target-dependent space quantization. Those spray population-based formulations outperform RSR and STRESS in terms of the processing time required for the production of noiseless outputs. We argue that this population-based approach, which can be extended to other members of the family, complements the sampling-based approach, in that it offers not only a better control in the design of approximated algorithms, but also additional insight into individual models and their relationships. We illustrate the latter point by providing a model of halo artifact formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.