Abstract

Binary response models are often applied in dose–response settings where the number of dose levels is limited. Commonly, one can find cases where the maximum likelihood estimation process for these models produces infinite values for at least one of the parameters, often corresponding to the ‘separated data’ issue. Algorithms for detecting such data have been proposed, but are usually incorporated directly into in the parameter estimation. Additionally, they do not consider the use of asymptotes in the model formulation. In order to study this phenomenon in greater detail, we define the class of specifiably degenerate functions where this can occur (including the popular logistic and Weibull models) that allows for asymptotes in the dose–response specification. We demonstrate for this class that the well-known pool-adjacent-violators algorithm can efficiently pre-screen for non-estimable data. A simulation study demonstrates the frequency with which this problem can occur for various response models and conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.