Abstract

This technical note is concerned with a maximum principle for a new class of non-zero sum stochastic differential games. The most distinguishing feature, compared with the existing literature, is that the game systems are described by backward stochastic differential equations (BSDEs). This kind of games are motivated by some interesting phenomena arising from financial markets and can be used to characterize the players with different levels of utilities. We establish a necessary condition and a sufficient condition in the form of maximum principle for open-loop equilibrium point of the foregoing games respectively. To explain the theoretical results, we use them to study a financial problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.