Abstract

One polysaccharide (SRP) was purified from Sanguisorbae radix by DEAE-cellulose-52 anion-exchange and Sephacryl S-400 gel filtration chromatography. The aim of this study was to evaluate the anticancer efficacy of SRP on human leukemia HL-60 cells in vitro and unveil the underlying mechanisms. Our results showed that SRP was able to suppress the proliferation of HL-60 cells in a dose-dependent manner by the mechanism involved in the induction of apoptosis. The increase in SRP-induced apoptosis was correlated with a rapid and sustained loss of mitochondrial transmembrane potential (ΔΨm) and a release of cytochrome c from the mitochondria into the cytosol. Furthermore, Western blot and RT-PCR analysis revealed that the protein and mRNA levels of antiapoptotic Bcl-2 were downregulated, whereas those of pro-apoptotic Bax were upregulated. Besides, caspase-9 and caspase-3 were activated, while caspase-8 was intact. Additionally, the apoptotic cells by SRP were significantly inhibited by a caspase-3 inhibitor (z-DEVD-fmk) or a caspase-9 inhibitor (Z-LETD-FMK), demonstrating the important role of caspase-9 and -3 in the process. Taken together, these findings provided evidence that SRP induced the apoptosis of HL-60 cells through an intrinsic mitochondria-mediated signaling pathway and SRP may be a promising chemotherapeutic agent for treatment of leukemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call