Abstract
Various glucose-sensitive drug delivery platforms have been developed recently to treat diabetes. However, there is much less work has been reported on treatment of diabetes and vascular diabetes complications simultaneously. In this work, a novel polysaccharide-based micelle-hydrogel synergistic therapy system was fabricated to address this limitation. Zwitterionic dialdehyde starch-based micelles (SB-DAS-VPBA) were synthesized via single electron transfer-living radical polymerization (SET-LRP). Hydrophilic segment sulfobetaine (SB) and hydrophobic segment 4‑vinylphenylboronic acid (VPBA) were grafted to the dialdehyde starch (DAS) backbones. Then, chitosan/dialdehyde starch derivatives (CS/SB-DAS-VPBA) micelle-hydrogel was synthesized by Schiff-base bonds. Insulin and nattokinase were loaded to obtain the micelle-hydrogel synergistic therapy system. In vitro drug delivery and blood clots dissolution behaviors were determined. Results suggest that the micelle-hydrogel synergistic therapy system not only possesses glucose-responsive insulin delivery property, but also provides good thrombolytic capacity. Thus, this micelle-hydrogel synergistic therapy system can be used as a platform for diabetes and vascular diabetes complications treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.