Abstract

A new PPy/CoFe2O4/HGMs microwave absorbing composite particle with three-layer sandwich structure, comprising cobalt ferrite (CoFe2O4) and polypyrrole (PPy) coating on the surface of hollow glass microspheres (HGMs), was synthesized by the method of co-precipitation and in situ polymerization. The surface morphology, phase structure and chemical component of the composite had been characterized by scanning electron microscope and X-ray diffractometer. The results indicated HGMs were coated by CoFe2O4 completely and the obtained CoFe2O4/HGMs composites were warped by PPy. The conductivity and the saturation magnetization Ms of the resulting PPy/CoFe2O4/HGMs composites are 0.09 S/cm and 46 emu/g, respectively. The vector network analyzer showed the composite performed better microwave absorption ability than that of PPy and PPy/HGMs. The reflection loss of the composite with 2.58 mm thickness is more than−10 dB which means over 90 % microwave is absorbed in X-band (8.38–12.4 GHz). The ternary composite that has light weight, wide absorbing bandwidth, strong absorbing capacity and conductivity can be an attractive candidate in the field of microwave absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call