Abstract

Let K=(K 1,…,K n ) be an n-tuple of convex compact subsets in the Euclidean space R n , and let V(⋅) be the Euclidean volume in R n . The Minkowski polynomial V K is defined as V K (λ 1,…,λ n )=V(λ 1 K 1+⋅⋅⋅+λ n K n ) and the mixed volume V(K 1,…,K n ) as $$V(K_{1},\ldots,K_{n})=\frac{\partial^{n}}{\partial\lambda_{1}\cdots\partial \lambda_{n}}V_{\mathbf{K}}(\lambda_{1},\ldots,\lambda_{n}).$$ Our main result is a poly-time algorithm which approximates V(K 1,…,K n ) with multiplicative error e n and with better rates if the affine dimensions of most of the sets K i are small. Our approach is based on a particular approximation of log (V(K 1,…,K n )) by a solution of some convex minimization problem. We prove the mixed volume analogues of the Van der Waerden and Schrijver–Valiant conjectures on the permanent. These results, interesting on their own, allow us to justify the abovementioned approximation by a convex minimization, which is solved using the ellipsoid method and a randomized poly-time time algorithm for the approximation of the volume of a convex set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.