Abstract
An important part of reaping computational advantage from a quantum computer is to reduce the quantum resources needed to implement a desired quantum algorithm. Quantum algorithms that are too large to be practical on noisy intermediate scale quantum devices will require fault-tolerant error correction. This work focuses on reducing the physical cost of implementing quantum algorithms when using the state-of-the-art fault-tolerant quantum error correcting codes, in particular, those for which implementing the T gate consumes vastly more resources than the other gates in the gate set. More specifically, in this paper we consider the group of unitaries that can be exactly implemented by a quantum circuit consisting of the Clifford + T gate set. The Clifford + T gate set is a universal gate set and in this group, using state-of-the-art surface codes, the T gate is by far the most expensive component to implement fault-tolerantly. So it is important to minimize the number of T gates necessary for a fault-tolerant implementation. Our primary interest is to compute a circuit for a given n-qubit unitary U, using the minimum possible number of T gates (called the T-count of unitary U). We consider the problem COUNT-T, the optimization version of which aims to find the T-count of U. In its decision version the goal is to decide if the T-count is at most some positive integer m. Given an oracle for COUNT-T, we can compute a T-count-optimal circuit in time polynomial in the T-count and dimension of U. We give a provable classical algorithm that solves COUNT-T (decision) in time and space , where N = 2 n and c ⩾ 2. This gives a space-time trade-off for solving this problem with variants of meet-in-the-middle techniques. We also introduce an asymptotically faster multiplication method that shaves a factor of N 0.7457 off of the overall complexity. Lastly, beyond our improvements to the rigorous algorithm, we give a heuristic algorithm that outputs a T-count-optimal circuit and has space and time complexity poly(m, N), under some assumptions. In our heuristic algorithm we developed a novel way of pruning the search space. While our heuristic method still scales exponentially with the number of qubits (though with a lower exponent), there is a large improvement by going from exponential to polynomial scaling with m. We implemented our heuristic algorithm with up to 4 qubit unitaries and obtained a significant improvement in time. For all benchmark and random unitaries we studied, the T-count returned by our algorithm is at most the T-count of their circuits shown in previous papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.