Abstract

In this article, we introduce a fixed parameter tractable algorithm for computing the Turaev-Viro invariants TV4,q, using the dimension of the first homology group of the manifold as parameter.This is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using a topological parameter. The computation of TV4,q is known to be #P-hard in general; using a topological parameter provides an algorithm polynomial in the size of the input triangulation for the extremely large family of 3-manifolds with first homology group of bounded rank.Our algorithm is easy to implement and running times are comparable with running times to compute integral homology groups for standard libraries of triangulated 3-manifolds. The invariants we can compute this way are powerful: in combination with integral homology and using standard data sets we are able to roughly double the pairs of 3-manifolds we can distinguish.We hope this qualifies TV4,q to be added to the short list of standard properties (such as orientability, connectedness, Betti numbers, etc.) that can be computed ad-hoc when first investigating an unknown triangulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.