Abstract

A flow-shop batching problem with consistent batches is considered in which the processing times of all jobs on each machine are equal to p and all batch set-up times are equal to s. In such a problem, one has to partition the set of jobs into batches and to schedule the batches on each machine. The processing time of a batch B i is the sum of processing times of operations in B i and the earliest start of B i on a machine is the finishing time of B i on the previous machine plus the set-up time s. Cheng et al. (Naval Research Logistics 47:128---144, 2000) provided an O(n) pseudopolynomial-time algorithm for solving the special case of the problem with two machines. Mosheiov and Oron (European Journal of Operational Research 161:285---291, 2005) developed an algorithm of the same time complexity for the general case with more than two machines. Ng and Kovalyov (Journal of Scheduling 10:353---364, 2007) improved the pseudopolynomial complexity to $O(\sqrt{n})$ . In this paper, we provide a polynomial-time algorithm of time complexity O(log?3 n).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.