Abstract

Treedepth is a well-studied graph invariant in the family of width measures that includes treewidth and pathwidth. Understanding these invariants in terms of excluded minors has been an active area of research. The recent Grid Minor Theorem of Chekuri and Chuzhoy [12] establishes that treewidth is polynomially approximated by the largest k x k grid minor. In this paper, we give a similar polynomial excluded-minor approximation for treedepth in terms of three basic obstructions: grids, tree, and paths. Specifically, we show that there is a constant c such that every graph of treedepth ≥ kc contains one of the following minors (each of treedepth ≥ k): • the k x k grid, • the complete binary tree of height k, • the path of order 2k. Let us point out that we cannot drop any of the above graphs for our purpose. Moreover, given a graph G we can, in randomized polynomial time, find either an embedding of one of these minors or conclude that treedepth of G is at most kc. This result has potential applications in a variety of settings where bounded treedepth plays a role. In addition to some graph structural applications, we describe a surprising application in circuit complexity and finite model theory from recent work of the second author [28].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.