Abstract
Consider a nonempty convex set in R^m which is defined by a finite number of smooth convex inequalities and which admits a self-concordant logarithmic barrier. We study the analytic center based column generation algorithm for the problem of finding a feasible point in this set. At each iteration the algorithm computes an approximate analytic center of the set defined by the inequalities generated in the previous iterations. If this approximate analytic center is a solution, then the algorithm terminatess otherwise either an existing inequality is shifted or a new inequality is added into the system. As the number of iterations increases, the set defined by the generated inequalities shrinks and the algorithm eventually finds a solution of the problem. The algorithm can be thought of as an extension of the classical cutting plane method. The difference is that we use analytic centers and “convex cuts” instead of arbitrary infeasible points and linear cuts. In contrast to the cutting plane method, the algorithm has a polynomial worst case complexity ofO(N\log\frac{1}{\varepsilon}) on the total number of cuts to be used, where N is the number of convex inequalities in the original problem and e is the maximum common slack of the original inequality system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.