Abstract
A new microsatellite locus (SAS1) for Squalius alburnoides was obtained through cloning by serendipity. The possible usefulness of this new species-specific microsatellite in genetic studies of this hybrid-species complex, was explored. The polymorphism exhibited by SAS1 microsatellite is an important addition to the set of microsatellites previously used in genetic studies in S. alburnoides complex, that mostly relied in markers described for other species. Moreover, the SAS1 microsatellite could be used to identify the parental genomes of the complex, complementing other methods recently described for the same purpose..
Highlights
The taxon Squalius alburnoides is a small endemic cyprinid inhabiting the rivers of the Iberian Peninsula and is among the most complex polyploid systems known in vertebrates
Based on molecular markers information, S. alburnoides is recognized as a hybrid taxon resulting from an ancient and unidirectional hybridization between S. pyrenaicus females (P genome) and males (A genome) of an extinct species sister to Anaecypris hispanica
The asexual modes range from clonal inheritance to hybridogenesis or meiotic hybridogenesis, whereby sympatric bisexual Squalius species act as sperm donors and contribute with new genetic material, i.e.., S. pyrenaicus, mainly in the southern basins of the Iberian Peninsula (P genome), and S. carolitertii in the northern (C genome))
Summary
The taxon Squalius alburnoides is a small endemic cyprinid inhabiting the rivers of the Iberian Peninsula and is among the most complex polyploid systems known in vertebrates. Based on molecular markers information, S. alburnoides is recognized as a hybrid taxon resulting from an ancient and unidirectional hybridization between S. pyrenaicus females (P genome) and males (A genome) of an extinct species sister to Anaecypris hispanica (reviewed in Alves et al 2001, Robalo et al 2006).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.