Abstract

An emerging approach toward repair of connective tissues applies exogenous crosslinkers to mechanically augment injured structures invivo. One crosslinker that has been explored for this purpose is the plant-derived small molecule genipin. However, genipin's high reactivity to primary amines in proteins, small size, and high diffusion coefficient necessitate localizing and controlling its delivery to avoid off-target or adverse effects. In this study, genipin-loaded polymers were evaluated for sustained local administration. Insoluble polymers comprising subunits of α-, β-, or γ-cyclodextrin, cyclic oligosaccharides possessing increasing cavity sizes, were compared to polymers comprising subunits of the non-cyclic polysaccharide dextran. Polymers made from β-cyclodextrin showed prolonged genipin release for over ten times longer than polymers made from α- or γ-cyclodextrins or dextran, indicating that genipin possesses molecular affinity for the β-cyclodextrin cavity. Modeling of complexation between genipin and cyclodextrin hosts supported this finding. Genipin released from all polymers was confirmed to be functional by exogenous collagen crosslinking through fluorometric and mechanical readouts. Co-incubation of genipin-loaded polymers with bovine tendon explants showed genipin crosslink-mediated coloration that was confined to the sites of exposure. Altogether, results indicate that host-guest interactions within a polymeric delivery vehicle can help to control and confine genipin release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.