Abstract
An off-lattice bead-spring model of a polymer chain trapped between two parallel walls a distance D apart is studied by Monte-Carlo methods, using chain lengths N in the range $$32 \le N \le 512$$ and distances D from 4 to 32 (in units of the maximum spring extension). The scaling behavior of the coil linear dimensions parallel to the plates and of the force on the walls is studied and discussed with the help of current theoretical predictions. Also the density profiles of the monomers across the slit are obtained and it is shown that the predicted variation with the distance z from a wall, $$\rho (z) \propto {z^{1/\nu }}$$ , is obtained only when one introduces an extrapolation length λ in the description, $$\rho (z) \propto {[(z + \lambda )/D]^{1/\nu }}$$ , with $$\lambda \approx 0.35$$ . An analogous result is also obtained for Gaussian chains (where $$1/\nu = 2$$ ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.