Abstract
The activation of multiple Pattern Recognition Receptors (PRRs) has been demonstrated to trigger inflammatory responses and coordinate the host's adaptive immunity during pathogen infections. The use of PRR agonists as vaccine adjuvants has been reported to synergistically induce specific humoral and cellular immune responses. However, incorporating multiple PRR agonists as adjuvants increases the complexity of vaccine design and manufacturing. In this study, we discovered a polymer that can activate both the Toll-like receptor (TLR) pathway and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. The polymer was then conjugated to protein antigens, creating an antigen delivery system for subunit vaccines. Without additional adjuvants, the antigen-polymer conjugates elicited strong antigen-specific humoral and cellular immune responses. Furthermore, the antigen-polymer conjugates, containing the Receptor Binding Domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein or the Monkeypox Antigen M1R as the antigens, were found to induce potent antigen-specific antibodies, neutralizing antibodies, and cytotoxic T cells. Immunization with M1R-polymer also resulted in effective protection in a lethal challenge model. In conclusion, this vaccine delivery platform offers an effective, safe, and simple strategy for inducing antigen-specific immunity against infectious diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.