Abstract

The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0–0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call