Abstract

A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive distinct colors whenever they are adjacent. An acyclic coloring of G is a coloring such that no cycle of G receives exactly two colors, and the acyclic chromatic numberχA(G) of a graph G is the minimum number of colors in any such coloring of G. Given a graph G and an integer k, determining whether χA(G)≤k or not is NP-complete even for k=3. The acyclic coloring problem arises in the context of efficient computations of sparse and symmetric Hessian matrices via substitution methods. In this work we start an integer programming approach for this problem, by introducing a natural integer programming formulation and presenting six families of facet-inducing valid inequalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.