Abstract

This paper considers 2D contact arrangements where several bodies grasp, fixture, or support an object via frictional point contacts. Within a strictly rigid body modelling paradigm, when an external wrench (i.e. force and torque) acts on the object, the reaction forces at the contacts are indeterminate and span an unbounded linear space. This paper analyzes the contact forces within a quasi-rigid body framework that keeps the desirable geometric properties of rigid body modelling, while also includes more realistic physical effects. Using two principles governing the mechanics of quasi-rigid contacts, we show that for any given external wrench acting on the object, the contact forces lie in a bounded polyhedral set. The polyhedral bound depends on the external wrench, the grasp's geometry, and the preload forces. But it does not depend on any detailed knowledge of the contact mechanics parameters. The bound is useful for robust grasp and fixture synthesis. Given a collection of external wrenches that may act on an object, the grasp's geometry and preload forces can be chosen such that all of these external wrenches would be automatically supported by the contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.