Abstract
Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.