Abstract

Here, we report an empirical study of the polygenic basis underlying the evolution of complex traits. Flowering time variation measured at 10 and 16°C in the 1,001-genomes Arabidopsis thaliana collection of natural accessions were used as a model. The polygenic architecture of flowering time was defined as the 48 loci that were significantly associated with flowering time-at 10 and/or 16°C and/or their difference-in this population. Contributions from alleles at flowering time associated loci to global and local adaptation were explored by evaluating their distribution across genetically and geographically defined subpopulations across the native range of the species. The dynamics in the genetic architecture of flowering time in response to temperature was evaluated by estimating how the effects of these loci on flowering changed with growth temperature. Overall, the genetic basis of flowering time was stable-about 2/3 of the flowering time loci had similar effects at 10°C and 16°C-but many loci were involved in gene by temperature interactions. Globally present alleles, mostly of moderate effect, contributed to the differences in flowering times between the subpopulations via subtle changes in allele frequencies. More extreme local adaptations were, on several occasions, due to regional alleles with relatively large effects, and their linkage disequilibrium-patterns suggest coevolution of functionally connected alleles within local populations. Overall, these findings provide a significant contribution to our understanding about the possible modes of global and local evolution of a complex adaptive trait in A. thaliana.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call