Abstract

AbstractAn improved population balance‐based rheological constitutive framework for polydisperse aggregating suspensions is derived by incorporating detailed models for orthokinetic and perikinetic aggregation and shear breakage processes. The framework accounts for critical properties such as dynamic arrest, viscoelasticity, kinematic hardening, thixotropy, and yield stress to generate a full range of thixotropic elasto‐viscoplastic (TEVP) response. Additionally, the model is thermodynamically consistent because the dynamics and timescales are completely determined by internal structural and kinetic variables. The model connects the rheological response to the structural descriptors such as the size distribution of agglomerates, mean sizes, fractal dimension, and agglomerate volume fraction. Predictions are compared against a wide range of shear rheology measurements data for model thixotropic suspensions of fumed silica and carbon black, including large amplitude oscillatory shear (LAOS), as well as ultra‐small angle neutron scattering under steady shear (Rheo‐uSANS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call