Abstract
A polydimethylsiloxane-glass capillary microchip is fabricated for the rapid analysis of a mixture of common biogenic amines using indirect fluorescence detection. Using a running buffer of phosphate and 2-propanol, and Rhodamine 110 as a background fluorophore, both co-ionic and counter-ionic systems are explored. Studies demonstrate the separation and analysis of cations using indirect fluorescence detection for the first time in a chip-based system. Resulting electrophoretic separations are achieved within a few tens of seconds with detection limits of approximately 6 microM. The reduced sample handling and rapid separations afforded by the coupling of indirect fluorescence detection with chip-based capillary electrophoresis provide a highly efficient method for the analysis and detection of molecules not possessing a chromophore or fluorophore. Furthermore, limits of detection are on a par with reported chip-based protocols that incorporate precolumn derivatisation with fluorescence detection. The current device circumvents lengthy sample preparation stages and therefore provides an attractive alternative technique for the analysis biogenic amines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.