Abstract

Antibacterial hydrogel wound dressing is highly desirable in wound healing and infection control. However, the development of antibacterial hydrogels with controllable antibacterial properties and adequate mechanical properties without bacterial resistance and potential toxicity remains a challenge. Herein, a double bonds-ended polyaniline nanoparticle (Me-PANI NP) is synthesized, which can convert light energy into heat upon near-infrared (NIR) irradiation, and it is used as a novel photothermal antibacterial agent. The obtained bonds-ended Me-PANI NPs are subsequently involved in polyacrylamide (PAM) polymerization and served as chemical crosslinking points to form the Me-PANI NPs@PAM hydrogel, endowing the hydrogel with controllable photothermal antibacterial abilities upon NIR irradiation without time and space limit. Importantly, due to the energy dissipation of Me-PANI NPs under stretch, the Me-PANI NPs@PAM hydrogel achieves a maximum stretching ratio of 400% mechanical flexibility. The developed hydrogel can be potentially applied as a novel wound dressing to realize controllable treatment of bacterial infections and accelerate skin wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.