Abstract
A hydrophilic star block co-polymer was synthesized, characterized, and evaluated as a protein nanocarrier. The star block co-polymer was composed of a hyperbranched polyethylenimine (PEI) core, a poly(l-lysine) (PLL) inner shell, and a poly(ethylene glycol) (PEG) outer shell. The model protein insulin can be rapidly and efficiently encapsulated by the synthesized polymer in aqueous phosphate buffer at physiological pH. Complexation between PEI–PLL–b-PEG and insulin was investigated using native polyacrylamide gel electrophoresis. The uptake of enhanced green fluorescent protein into Ad293 cells mediated by PEI–PLL–b-PEG was also investigated. The encapsulated insulin demonstrated sustained release at physiological pH and showed accelerated release when the pH was decreased. The insulin released from the star block co-polymer retained its chemical integrity and immunogenicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.