Abstract

Abstract. The recent and fossil pollen data obtained under the frame of the multi-disciplinary international El'gygytgyn Drilling Project represent a unique archive, which allows the testing of a range of pollen-based reconstruction approaches and the deciphering of changes in the regional vegetation and climate. In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El'gygytgyn. All terrestrial pollen taxa identified in the spectra from Lake El'gygytgyn were assigned to major vegetation types (biomes), which today occur near the lake and in the broader region of eastern and northern Asia and, thus, could be potentially present in this region during the past. When applied to the pollen spectra from the middle Pleistocene to present, the method suggests (1) a predominance of tundra during the Holocene, (2) a short interval during the marine isotope stage (MIS) 5.5 interglacial distinguished by cold deciduous forest, and (3) long phases of taiga dominance during MIS 31 and, particularly, MIS 11.3. These two latter interglacials seem to be some of the longest and warmest intervals in the study region within the past million years. During the late Pliocene–early Pleistocene interval (i.e., ~3.562–2.200 Ma), there is good correspondence between the millennial-scale vegetation changes documented in the Lake El'gygytgyn record and the alternation of cold and warm marine isotope stages, which reflect changes in the global ice volume and sea level. The biome reconstruction demonstrates changes in the regional vegetation from generally warmer/wetter environments of the earlier (i.e., Pliocene) interval towards colder/drier environments of the Pleistocene. The reconstruction indicates that the taxon-rich cool mixed and cool conifer forest biomes are mostly characteristic of the time prior to MIS G16, whereas the tundra biome becomes a prominent feature starting from MIS G6. These results consistently indicate that the study region supported significant tree populations during most of the interval prior to ~2.730 Ma. The cold- and drought-tolerant steppe biome first appears in the reconstruction ~3.298 Ma during the tundra-dominated MIS M2, whereas the tundra biome initially occurs between ~3.379 and ~3.378 Ma within MIS MG4. Prior to ~2.800 Ma, several other cold stages during this generally warm Pliocene interval were characterized by the tundra biome.

Highlights

  • Lake El’gygytgyn 60°NSince the introduction of pollen analysis to the field of geology in 1916, its main purpose has been the objective reconstruction of temporal and spatial changes in vegetation at local to regional scales (Faegri and Iversen, 1989)

  • In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El’gygytgyn

  • This paper presents the pollen-based biome reconstruction using the published late Pliocene and Quaternary pollen record from Lake El’gygytgyn and the “biomization” method first introduced by Prentice et al (1996)

Read more

Summary

Introduction

Since the introduction of pollen analysis to the field of geology in 1916, its main purpose has been the objective reconstruction of temporal and spatial changes in vegetation (mainly during the Quaternary period) at local to regional scales (Faegri and Iversen, 1989). Related to this task is the evaluation of the possible roles played by natural factors (e.g., climate change, volcanism, sea-level fluctuations). Tree line is located ∼ 150 km to the southwest of the lake (Lozhkin and Anderson, 2013)

Pollen data and chronology
Biome reconstruction method
Test with the modern pollen spectra
A Biome score
Data–model comparison
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call