Abstract

Supramolecular host-guest ferroelectrics based on solution processing are highly desirable because they are generally created with intrinsic piezoelectricity/ferroelectricity and do not need further poling. Poly(vinylidene fluoride) (PVDF) in the electric-active beta phase after stretching/annealing still shows no piezoelectric response unless poled. Although many supramolecular host-guest ferroelectrics have been discovered, their piezoelectricity is relatively small. Based on H/F substitution, we reported a supramolecular host-guest compound [(CF3-C6H4-NH3)(18-crown-6)][TFSA] (CF3-C6H4-NH3 = 4-trifluoromethylanilinium, TFSA = bis(trifluoromethanesulfonyl)ammonium) with a remarkable piezoelectric response of 42 pC/N under no poling condition. The introduction of F atoms increases phase transition temperature, polar axes, second harmonic generation (SHG) intensity, and piezoelectric coefficient d33. To our knowledge, such a large piezoelectric performance of [(CF3-C6H4-NH3)(18-crown-6)][TFSA] makes its d33, piezoelectric voltage coefficient g33, and mechanical quality factor Qm the highest among the reported supramolecular host-guest ferroelectric compounds and even larger than the values of PVDF. This work provides inspiration for optimizing piezoelectricity on molecular materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.