Abstract

Zero-sum two-person discounted semi-Markov games with finite state and action spaces are studied where a collection of states having Perfect Information (PI) property is mixed with another collection of states having Additive Reward–Additive Transition and Action Independent Transition Time (AR-AT-AITT) property. For such a PI/AR-AT-AITT mixture class of games, we prove the existence of an optimal pure stationary strategy for each player. We develop a policy improvement algorithm for solving discounted semi-Markov decision processes (one player version of semi-Markov games) and using it we obtain a policy-improvement type algorithm for computing an optimal strategy pair of a PI/AR-AT-AITT mixture semi-Markov game. Finally, we extend our results when the states having PI property are replaced by a subclass of Switching Control (SC) states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.