Abstract
We study the risk-sensitive exponential cost Markov decision process (MDP) formulation and develop a trajectory-based gradient algorithm to find the stationary point of the cost associated with a set of parameterized policies. We derive a formula that can be used to compute the policy gradient from (state, action, cost) information collected from sample paths of the MDP for each fixed parameterized policy. Unlike the traditional average cost problem, standard stochastic approximation theory cannot be used to exploit this formula. To address the issue, we introduce a truncated and smooth version of the risk-sensitive cost and show that this new cost criterion can be used to approximate the risk-sensitive cost and its gradient uniformly under some mild assumptions. We then develop a trajectory-based gradient algorithm to minimize the smooth truncated estimation of the risk-sensitive cost and derive conditions under which a sequence of truncations can be used to solve the original, untruncated cost problem. Funding: This work was supported by the Office of Naval Research Global [Grant N0001419-1-2566], the Division of Computer and Network Systems [Grant 21-06801], the Army Research Office [Grant W911NF-19-1-0379], and the Division of Computing and Communication Foundations [Grants 17-04970 and 19-34986].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.