Abstract

In this study a control-oriented model is proposed to represent a wide range of non-linear discrete-time dynamic plants. As a testimony to the efficiency of the model structure for control system design, a pole placement controller is designed for non-linear discrete-time plants. Mathematically the solution of the controller output is converted into resolving a polynomial equation in the current control term u( t), which significantly reduces the difficulties encountered in non-linear control system synthesis and computational complexities. The integrated procedure provides a straightforward methodology to use in linear control system design techniques when designing non-linear control systems. For a demonstration of the effectiveness of the proposed methodology used to deal with practical problems, pole placement controllers are designed for three non-linear plants, including the Hammerstein model, a laboratory-scale liquid level system and a continuous stirred tank reactor. The simulation results are presented with graphical illustrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.