Abstract

Nonlinear plasmons are becoming an appealing and intriguing research area due to their remarkable light concentration and manipulation abilities. In this work, the nonlinear absorption (NLA) phenomena of polarized nanoantenna arrays coupled with the low dimensional topological insulator Bi2Se3 are studied at different excitation wavelengths. Our experimental results indicate that a significant enhancement in the linear absorption coefficient is achieved by localized surface plasmon (LSP) resonance, with enhancement factors that are 10- and 8-fold in magnitude for the cases of 800 nm (y polarization) and 970 nm (x polarization), respectively. Moreover, by polarization sensitive studies under 800 nm laser excitation, this new Bi2Se3-Au nanoantenna hybrid-structure exhibits adverse absorption responses of enhancement and suppression compared to pure Bi2Se3 film, providing excellent potential for applications in information converters. In particular, under 800 nm pump light (10 GW cm-2), the transmittance intensity of 450 nm or 1064 nm continuous wave (CW) probe light alters back and forth when the polarization direction changes by 90°. Thus, "ON" and "OFF" modes of this Bi2Se3-Au nanoantenna hybrid structure-based switch are achieved by using 450 nm and 1064 nm light, respectively, with a corresponding modulation depth of 3.4% and 21.9%, which can be applied in versatile photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.