Abstract

We describe a novel variant of the driven molecular dynamics (DMD) method derived for probing Raman active vibrations. The method is an extension of the conventional μ-DMD formulation for simulating IR activity by means of coupling an oscillating electric field to the molecule’s dipole moment, μ, and inducing absorption of energy via tuning the field to a resonant frequency. Presently, we modify the above prescription to invoke Raman activity by coupling two electric fields, i.e. a ‘Pump’ photon of frequency ωP and a Stokes photon of frequency ωS to the molecule’s polarizability tensor, α, with the difference in the frequencies ω = ωP – ωS corresponding to the Stokes Raman shift. If ω is close to a Raman active vibrational frequency, energy absorption ensues. Varying ω allows identifying and assigning all Raman active vibrational modes, including anharmonic corrections, by means of trajectory analysis. We show that only one element of the full polarizability tensor, and its nuclear derivative, is needed for an α-DMD trajectory, making this method well suited for ab initio dynamics implementation. Numerical results using first-principles calculations are presented and discussed for the vibrational fundamentals, combination bands, overtones of H2O, CH4, and the C20 fullerene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.