Abstract
The task of fast object tracking in polar images using emerging high-resolution 360-degree camera technology is presented in this paper. In this approach, when an arbitrary object has been selected in the first frame, the proposed method searches for the object in the next frames. This task is challenging when the video contains complexity which cannot be handled by common tracking methods. The main contribution of this paper uses polar object selection and color binary features to facilitate robust object tracking in 360-degree images. Using the proposed polar object selection method, each object is represented by a polar component and high performance of the tracking algorithm in terms of precision and speed is achieved. We evaluate the applicability of our approach on a new dataset containing more than 30000 frames of 360-degree images wherein high performance in challenging real-world scenarios is demonstrated. The proposed algorithm outperforms the related methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.