Abstract

With the development of the Internet of Things (IoT), most communication systems are difficult to implement on a large scale due to their high complexity. Multiple-input multiple-output (MIMO) precoding is a generally used technique for improving the reliability of free-space optical (FSO) communications, which is a key technology in the 6G era. However, traditional MIMO precoding schemes are typically designed based on the assumption of additive white Gaussian noise (AWGN). In this paper, we present a novel MIMO precoding method based on reinforcement learning (RL) that is specifically designed for the Poisson shot noise model. Unlike traditional MIMO precoding schemes, our proposed scheme takes into account the unique statistical characteristics of Poisson shot noise. Our approach achieves significant performance gains compared to existing MIMO precoding schemes. The proposed scheme can achieve the bit error rate (BER) of 10−5 in a strong turbulence channel and exhibits superior robustness against imperfect channel state information (CSI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.